Murine models of life span extension.
نویسندگان
چکیده
Mice are excellent experimental models for genetic research and are being used to investigate the genetic component of organismal aging. Several mutant mice are known to possess defects in the growth hormone/insulin-like growth factor 1 (GH/IGF-1) neurohormonal pathway and exhibit dwarfism together with extended life span. Their phenotypes resemble those of mice subjected to caloric restriction. Targeted mutations that affect components of this pathway, including the GH receptor, p66Shc, and the IGF-1 receptor (IGF-1R), also extend life span; mutations that affect IGF-1R or downstream components of the pathway decouple longevity effects from dwarfism. These effects on life span may result from an increased capacity to resist oxidative damage.
منابع مشابه
Accessing Data Resources in the Mouse Phenome Database for Genetic Analysis of Murine Life Span and Health Span
Understanding the source of genetic variation in aging and using this variation to define the molecular mechanisms of healthy aging require deep and broad quantification of a host of physiological, morphological, and behavioral endpoints. The murine model is a powerful system in which to understand the relations across age-related phenotypes and to identify research models with variation in lif...
متن کاملAutophagy-mediated longevity is modulated by lipoprotein biogenesis
Autophagy-dependent longevity models in C. elegans display altered lipid storage profiles, but the contribution of lipid distribution to life-span extension is not fully understood. Here we report that lipoprotein production, autophagy and lysosomal lipolysis are linked to modulate life span in a conserved fashion. We find that overexpression of the yolk lipoprotein VIT/vitellogenin reduces the...
متن کاملVisions & Reflections (Minireview) Ruminations on dietary restriction and aging
Calorie restriction has been known formany decades to extend the life span of rodents. Since the more recent discovery that a long-term reduction in nutrient intake also extends life span in nearly every invertebrate model organism used for aging research, the mechanisms behind the longevity benefits of this intervention have been under intense scrutiny. While models have been developed in yeas...
متن کاملThe dihydrolipoamide acetyltransferase is a novel metabolic longevity factor and is required for calorie restriction-mediated life span extension.
Calorie restriction (CR) extends life span in a wide variety of species. Recent studies suggest that an increase in mitochondrial metabolism mediates CR-induced life span extension. Here we present evidence that Lat1 (dihydrolipoamide acetyltransferase), the E2 component of the mitochondrial pyruvate dehydrogenase complex, is a novel metabolic longevity factor in the CR pathway. Deleting the LA...
متن کاملIncreased Life Span due to Calorie Restriction in Respiratory-Deficient Yeast
A model for replicative life span extension by calorie restriction (CR) in yeast has been proposed whereby reduced glucose in the growth medium leads to activation of the NAD+-dependent histone deacetylase Sir2. One mechanism proposed for this putative activation of Sir2 is that CR enhances the rate of respiration, in turn leading to altered levels of NAD+ or NADH, and ultimately resulting in e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science of aging knowledge environment : SAGE KE
دوره 2004 31 شماره
صفحات -
تاریخ انتشار 2004